Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(X, L))) → S(length(L))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
TAKE(X1, active(X2)) → TAKE(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
MARK(true) → ACTIVE(true)
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
S(active(X)) → S(X)
MARK(false) → ACTIVE(false)
ACTIVE(take(0, X)) → MARK(nil)
EQ(X1, mark(X2)) → EQ(X1, X2)
MARK(inf(X)) → INF(mark(X))
ACTIVE(inf(X)) → S(X)
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(eq(s(X), s(Y))) → EQ(X, Y)
TAKE(active(X1), X2) → TAKE(X1, X2)
ACTIVE(take(s(X), cons(Y, L))) → TAKE(X, L)
ACTIVE(inf(X)) → INF(s(X))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
TAKE(mark(X1), X2) → TAKE(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(inf(X)) → CONS(X, inf(s(X)))
MARK(take(X1, X2)) → MARK(X2)
CONS(mark(X1), X2) → CONS(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
ACTIVE(length(cons(X, L))) → LENGTH(L)
EQ(X1, active(X2)) → EQ(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
EQ(active(X1), X2) → EQ(X1, X2)
LENGTH(mark(X)) → LENGTH(X)
MARK(inf(X)) → MARK(X)
INF(active(X)) → INF(X)
LENGTH(active(X)) → LENGTH(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
S(mark(X)) → S(X)
ACTIVE(take(s(X), cons(Y, L))) → CONS(Y, take(X, L))
ACTIVE(eq(X, Y)) → MARK(false)
ACTIVE(eq(0, 0)) → MARK(true)
ACTIVE(length(nil)) → MARK(0)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(0) → ACTIVE(0)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(nil) → ACTIVE(nil)
INF(mark(X)) → INF(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(cons(X, L))) → S(length(L))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
TAKE(X1, active(X2)) → TAKE(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
MARK(true) → ACTIVE(true)
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
S(active(X)) → S(X)
MARK(false) → ACTIVE(false)
ACTIVE(take(0, X)) → MARK(nil)
EQ(X1, mark(X2)) → EQ(X1, X2)
MARK(inf(X)) → INF(mark(X))
ACTIVE(inf(X)) → S(X)
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(eq(s(X), s(Y))) → EQ(X, Y)
TAKE(active(X1), X2) → TAKE(X1, X2)
ACTIVE(take(s(X), cons(Y, L))) → TAKE(X, L)
ACTIVE(inf(X)) → INF(s(X))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
TAKE(mark(X1), X2) → TAKE(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(inf(X)) → CONS(X, inf(s(X)))
MARK(take(X1, X2)) → MARK(X2)
CONS(mark(X1), X2) → CONS(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
ACTIVE(length(cons(X, L))) → LENGTH(L)
EQ(X1, active(X2)) → EQ(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
EQ(active(X1), X2) → EQ(X1, X2)
LENGTH(mark(X)) → LENGTH(X)
MARK(inf(X)) → MARK(X)
INF(active(X)) → INF(X)
LENGTH(active(X)) → LENGTH(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
S(mark(X)) → S(X)
ACTIVE(take(s(X), cons(Y, L))) → CONS(Y, take(X, L))
ACTIVE(eq(X, Y)) → MARK(false)
ACTIVE(eq(0, 0)) → MARK(true)
ACTIVE(length(nil)) → MARK(0)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(0) → ACTIVE(0)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(nil) → ACTIVE(nil)
INF(mark(X)) → INF(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 19 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(LENGTH(x1)) = (1/2)x_1   
POL(active(x1)) = 9/4 + x_1   
POL(mark(x1)) = 1/2 + (3/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, active(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.

TAKE(X1, active(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(TAKE(x1, x2)) = (3/2)x_1 + (4)x_2   
POL(active(x1)) = (2)x_1   
POL(mark(x1)) = 3/2 + x_1   
The value of delta used in the strict ordering is 9/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, active(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, active(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(TAKE(x1, x2)) = (3)x_1 + (1/2)x_2   
POL(active(x1)) = 4 + (9/4)x_1   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 3/2 + x_1   
POL(CONS(x1, x2)) = (4)x_1 + (3/2)x_2   
POL(mark(x1)) = (2)x_1   
The value of delta used in the strict ordering is 9/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(CONS(x1, x2)) = (3)x_1 + (1/2)x_2   
POL(mark(x1)) = 4 + (9/4)x_1   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INF(active(X)) → INF(X)
INF(mark(X)) → INF(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


INF(active(X)) → INF(X)
INF(mark(X)) → INF(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 9/4 + x_1   
POL(INF(x1)) = (1/2)x_1   
POL(mark(x1)) = 1/2 + (3/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1/2 + (3/2)x_1   
POL(mark(x1)) = 9/4 + x_1   
POL(S(x1)) = (1/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


EQ(active(X1), X2) → EQ(X1, X2)
EQ(X1, mark(X2)) → EQ(X1, X2)
EQ(mark(X1), X2) → EQ(X1, X2)
EQ(X1, active(X2)) → EQ(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 7/4 + x_1   
POL(mark(x1)) = 13/4 + (2)x_1   
POL(EQ(x1, x2)) = (1/4)x_1 + (1/2)x_2   
The value of delta used in the strict ordering is 7/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
MARK(take(X1, X2)) → MARK(X2)
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(s(X)) → ACTIVE(s(X))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
MARK(length(X)) → MARK(X)
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(take(X1, X2)) → MARK(X1)
MARK(inf(X)) → MARK(X)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(take(X1, X2)) → MARK(X2)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.

ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(s(X)) → ACTIVE(s(X))
MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(inf(X)) → MARK(X)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
Used ordering: Polynomial interpretation [25,35]:

POL(eq(x1, x2)) = 0   
POL(true) = 3/4   
POL(mark(x1)) = 4 + (13/4)x_1   
POL(take(x1, x2)) = 1/2 + x_1 + x_2   
POL(0) = 1   
POL(ACTIVE(x1)) = 0   
POL(inf(x1)) = (4)x_1   
POL(cons(x1, x2)) = 0   
POL(active(x1)) = 15/4   
POL(MARK(x1)) = x_1   
POL(false) = 2   
POL(s(x1)) = 0   
POL(length(x1)) = 3 + x_1   
POL(nil) = 7/2   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented:

eq(active(X1), X2) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(s(X)) → ACTIVE(s(X))
MARK(inf(X)) → MARK(X)
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(inf(X)) → MARK(cons(X, inf(s(X))))
ACTIVE(length(cons(X, L))) → MARK(s(length(L)))
MARK(inf(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
Used ordering: Polynomial interpretation [25,35]:

POL(eq(x1, x2)) = 0   
POL(true) = 0   
POL(mark(x1)) = 1 + (2)x_1   
POL(take(x1, x2)) = 0   
POL(0) = 0   
POL(ACTIVE(x1)) = (2)x_1   
POL(inf(x1)) = 4 + (4)x_1   
POL(cons(x1, x2)) = 0   
POL(active(x1)) = 1 + x_1   
POL(MARK(x1)) = (4)x_1   
POL(false) = 0   
POL(s(x1)) = 0   
POL(length(x1)) = 3   
POL(nil) = 0   
The value of delta used in the strict ordering is 6.
The following usable rules [17] were oriented:

mark(nil) → active(nil)
eq(active(X1), X2) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
mark(false) → active(false)
inf(active(X)) → inf(X)
inf(mark(X)) → inf(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
active(eq(X, Y)) → mark(false)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
mark(length(X)) → active(length(mark(X)))
mark(s(X)) → active(s(X))
active(inf(X)) → mark(cons(X, inf(s(X))))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(X1, X2))
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
active(eq(s(X), s(Y))) → mark(eq(X, Y))
mark(inf(X)) → active(inf(mark(X)))
active(length(cons(X, L))) → mark(s(length(L)))
active(eq(0, 0)) → mark(true)
active(length(nil)) → mark(0)
active(take(0, X)) → mark(nil)
mark(true) → active(true)
mark(0) → active(0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(s(X)) → ACTIVE(s(X))
ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(take(s(X), cons(Y, L))) → MARK(cons(Y, take(X, L)))
The remaining pairs can at least be oriented weakly.

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
Used ordering: Polynomial interpretation [25,35]:

POL(eq(x1, x2)) = (1/4)x_1 + (4)x_2   
POL(true) = 4   
POL(mark(x1)) = x_1   
POL(take(x1, x2)) = 2   
POL(0) = 13/4   
POL(ACTIVE(x1)) = 2 + (1/2)x_1   
POL(cons(x1, x2)) = 0   
POL(inf(x1)) = 0   
POL(active(x1)) = 4 + x_1   
POL(MARK(x1)) = 2 + x_1   
POL(false) = 4   
POL(s(x1)) = (2)x_1   
POL(length(x1)) = 9/4 + (9/4)x_1   
POL(nil) = 15/4   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

eq(active(X1), X2) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
inf(active(X)) → inf(X)
inf(mark(X)) → inf(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(inf(X)) → ACTIVE(inf(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
Used ordering: Polynomial interpretation [25,35]:

POL(eq(x1, x2)) = 0   
POL(true) = 5/2   
POL(mark(x1)) = 4   
POL(take(x1, x2)) = 3 + (11/4)x_1 + (13/4)x_2   
POL(0) = 15/4   
POL(ACTIVE(x1)) = 0   
POL(cons(x1, x2)) = 2 + x_1 + (4)x_2   
POL(inf(x1)) = 2 + (1/2)x_1   
POL(active(x1)) = 3 + (1/4)x_1   
POL(MARK(x1)) = (4)x_1   
POL(false) = 1/2   
POL(s(x1)) = 2   
POL(length(x1)) = 3/2 + (4)x_1   
POL(nil) = 5/2   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented:

eq(active(X1), X2) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))

The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(eq(X1, X2)) → ACTIVE(eq(X1, X2))
ACTIVE(eq(s(X), s(Y))) → MARK(eq(X, Y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = (2)x_1   
POL(MARK(x1)) = 4 + (3/2)x_1   
POL(eq(x1, x2)) = 11/4 + (2)x_1   
POL(mark(x1)) = x_1   
POL(s(x1)) = 4 + (2)x_1   
POL(ACTIVE(x1)) = 1 + x_1   
The value of delta used in the strict ordering is 29/8.
The following usable rules [17] were oriented:

eq(active(X1), X2) → eq(X1, X2)
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(eq(0, 0)) → mark(true)
active(eq(s(X), s(Y))) → mark(eq(X, Y))
active(eq(X, Y)) → mark(false)
active(inf(X)) → mark(cons(X, inf(s(X))))
active(take(0, X)) → mark(nil)
active(take(s(X), cons(Y, L))) → mark(cons(Y, take(X, L)))
active(length(nil)) → mark(0)
active(length(cons(X, L))) → mark(s(length(L)))
mark(eq(X1, X2)) → active(eq(X1, X2))
mark(0) → active(0)
mark(true) → active(true)
mark(s(X)) → active(s(X))
mark(false) → active(false)
mark(inf(X)) → active(inf(mark(X)))
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(length(X)) → active(length(mark(X)))
eq(mark(X1), X2) → eq(X1, X2)
eq(X1, mark(X2)) → eq(X1, X2)
eq(active(X1), X2) → eq(X1, X2)
eq(X1, active(X2)) → eq(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
inf(mark(X)) → inf(X)
inf(active(X)) → inf(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.